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Density of states of systems with randomly distributed 
donor monovalent impurities in two dimensions: an 
analytical treatment 

L F Perondi, M Fabbri and A Ferreira da Silva? 
MinistCrio da Citncia e Tecnologia, Instituto de Pesquisas Espaciais, 
Laboratdrio Associado de Sensores e Materiais, Caixa Postal 515, 
12201-Si0 JosC dos Campos, SP, Brazil 

Received 9 May 1988 

Abstract. Analytical calculations are made for a two-dimensional (ZD) disordered system in 
order to obtain the impurity density of states. It is shown that the impurity band is roughly 
symmetric and has no long low-energy tail, contrary to a three-dimensional system. The 
results are in agreement with the previous numerical calcuations by Ferreira da Silva and 
Fabbri and are compared with other 2D models. 

The problem of two-dimensional (2D) disordered systems is a subject of current interest, 
especially in connection with the study of the electronic properties where a change in 
the dimensionality (i.e. from three-dimensional ( 3 ~ )  to a 2~ system) leads to the poorly 
understood metal-to-non-metal transition. A technique for investigating the problem of 
spatial disorder has been introduced by Matsubara and Toyozawa (MT) (1961), which has 
enabled calculations of the density of states and conductivity of doped semiconductors to 
be made utilising a Green function approach, Calculations were carried out analytically 
for 3~ systems with sufficient merit to warrant closer inspection in 2 ~ .  Following their 
scheme, Debney (1976,1977), using a 3D electron hopping energy integral Vij, calculated 
numerically (Kikuchi 1974) and analytically the 2~ density of states. Considering this 
type of pure off-diagonal disorder numerically, he found that an Anderson transition 
does take place at a critical concentration given by N'I2aH = 0.364 ( N  being the con- 
centration and a H  the effective Bohr radius). The type of disorder that he found in his 
work has caused some discussion (Mott 1978, Thouless 1978). Weaire and Srivastava 
(1977), Economou and Antoniou (1977), Hoshino and Watanabe (1977), Tsujino et a1 
(1979), Yonezawa (1980) and Fertis etaZ(l981) found that the pure off-diagonal disorder 
cannot localise states, e.g. at the centre of the band (Fabbri and Ferreira da Silva 1983a, 
b). It is by now clear that the discrepancy between the work of Debney and those cited 
above is due to the different types of hopping matrix element V ,  used. 
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In this paper we perform an analytical calculation with a proper 2~ Vl, and its Fourier 
transform in order to obtain the 2D density of states for disordered systems. The disorder 
is according to the MT scheme. We show that the 2D density of states does not present 
a long low-energy tail nor strong asymmetry, both of which appeared in Debney's 
calculation. The results obtained are in accord with our previous numerical calculation 
(Ferreira da Silva and Fabbri (1984), hereafter referred to as I) and we found some 
similarity to the results obtained by Puri and Odagaki (1981). 

For doped semiconductors with monovalent impurities, the Hamiltonian in a random 
one-body tight-binding approximation is taken to be 

for a single impurity band, where a: and a, respectively, are the creation and the 
annihilation operators of an electron at the ith impurity site. In the absence of com- 
pensation, the diagonal matrix element {E,} can be assumed to be independent of i (Chao 
and Ferreira da Silva 1979, Ferreira da Silva 1980, Ferreira da Silva et a1 1983). As 
measured from the host conduction band, it can be taken as Ed = ( = -2.0 effective 
Hartrees, in a 2D system (according to I), the ionisation energy of an isolated impurity. 
In this work, we take this as our energy origin. Each of the off-diagonal matrix elements 
Vl, depends mainly on the relative distance R,, between the site i and the sitej. The 2~ V,, 
between two hydrogenic 1s orbitals is obtained as (see It) 

v, = - 2V,RL,K,(2R,) = -8Rt,K1(2Rt,) (2) 
where V, = 21 Ed and K ,  is the modified Bessel function of first order. 

functions, whose matrix elements in the site representation are defined as 
The density of states, as in the original MT scheme, is calculated from the Green 

G;,(E) = (Ola,(E - H k i&)-' a,'lO) 

G,,(E) = ( i / W [ G A , ( E )  - GA(J5)I. 

(3) 

(4) 
It is convenient to define 

where the bar indicates configuration averaging, and wi- = E f it.. Here we shall drop 
the superscripts (k) as no confusion can arise, since the analysis is equally valid for either 
Green function. Then satisfies the adapted original MT equation for two dimensions: 

where N is the impurity concentration per square centimetre and u(k)  is the 2~ Fourier 
transform of Vij (equation (2)) obtained as (see I) 

~ ( k )  = - 6 4 ~ V o ~ & / 4 ( 4  + k2a&)'. (7) 
Equation (6) can be rewritten, in Hartree units, as 

W - - = -  (8) E ( 2 4 2  I 1 - (NE/w)u(k)  + l. 

i In this previous work, because of a typing error, figures 1 and 4 should be in hartrees, and equations ( 5 )  and 
(11) should be compared with equations (2) and ( 7 ) ,  respectively, in the present paper. 
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Defining 

P = 1 6 n N c ~ - ~  

as the dimensionless impurity concentration, and 

x =  - PE/W 

and using equation (7), in hartrees, as 

~ ( k )  = - 16nm2/(a2 + k2)2 

where a = 2/aH, we can rewrite equation (8) as 

w = 1 - P/X- 4 q x )  

where 

(9) 

By writing 

X = X o  exp(i0) (14) 

Z(X) = (1 /2~’ /* )  (In R~ + i q )  (15) 

where 0 < 0 < n for G i  and -n < 8 < 0 for G; , we easily obtain 

where 

R,, =[[{[I + x ; l 2  c ~ ~ ( e / 2 ) ] 2  +x, sin2 (e/2)}/{[1 -xi/*  COS(^/^)]^ +x, ~ i n ~ ( 0 / 2 ) ) ] ~ / ~  

q = q; + qF + n  
(14) 

(17) 

Then, the self-consistent equation (12) is written as 

w=1-(P/X0)(cos 8- i s in  ~) - (1 /2X~~2)[cos(~/2) - i s in(B/2) ] ( lnRo + i q ) .  (19) 

From the real and imaginary parts we obtain the following equations: 

w = 1 - (P/X,> cos e - ( I / ~ x ; ’ ~ ) [ c o s ( ~ / ~ )  In R~ + q sin(e/2)] (20) 

(21) 

and 

(P/x,) sin e= (1/2xY2)[q  COS(^/^) - 1 n ~ ~  sin(e/2)]. 

Varying 8 ,  we obtain the Xo-values which satisfy equation (21), for a given value of P 
and, from equation (20), we obtain the corresponding energies. The density of states is 
given by D ( E )  = - (N/n) Im[Gz] and is obtained as 

(22) 
The results for the 2~ impurity density of states are shown in figure 1, for N1/’aH = 

0.24 and 0.12. As the impurity concentration decreases, the band becomes narrower 
and more symmetric, with no long-band tailing on the low-energy side as observed in 

D ( E )  = - (N/x) Im(E/E) = ( N / P n )  Im X = (1/4n2a&)Xo sin 8. 
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Figure 1. The ZD density of states for two values 
of N’’*u,. Ed is set at the origin. The bottom of the 
conduction band (CB) is set at 4.0 effective ryd. 
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the 3~ density of states, as well as in Debney's work. These results are in accord with our 
previous cluster calculation (I). In I ,  P = 12 and 3 correspond properly to the N1/2aH- 
values above. In figure 2 we show, as a function of N'/*u,, the band width, the Fermi 
energy E, and the energy Eo at which the density of states takes the maximum value. 
The energy is taken in effective rydbergs. It is worthwhile to point out that such behav- 
iour, shown in both figures, was also obtained by Puri and Odagaki (1981) who used a 
homomorphic cluster coherent-potential approximation with a square lattice as an 
effective medium. For the criterion of localisation, they used a modified Hertz distri- 
bution which takes into account the Vu as for a 3~ system. For comparison, Fertis et a1 
(1981) compared the N:/3aH-value of about 0.19 at which the upper edge energy E, in 
the 3~ MT scheme crosses the conduction band with the very well known Mott (1974) 
criterion NA/3aH = 0.26 * 0.05 (Edwards and Sienko 1978) for the metal-to-non-metal 
transition in doped semiconductors and found that value very suggestive. In our 2~ 
calculations, E, crosses the conduction band at N'/*u, = 0.34. This result agrees very 
well with Debney's result. 
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